2,369 research outputs found

    Nielsen-Olesen strings in Supersymmetric models

    Get PDF
    We investigate the behaviour of a model with two oppositely charged scalar fields. In the Bogomol'nyi limit this may be seen as the scalar sector of N=1 supersymmetric QED, and it has been shown that cosmic strings form. We examine numerically the model out of the Bogomol'nyi limit, and show that this remains the case. We then add supersymmetry-breaking mass terms to the supersymmetric model, and show that strings still survive. Finally we consider the extension to N=2 supersymmetry with supersymmetry-breaking mass terms, and show that this leads to the formation of stable cosmic strings, unlike in the unbroken case.Comment: 7 pages, 2 figues, uses revtex4; minor typos corrected; references adde

    Critical phenomena in a highly constrained classical spin system: Neel ordering from the Coulomb phase

    Full text link
    Many classical, geometrically frustrated antiferromagnets have macroscopically degenerate ground states. In a class of three-dimensional systems, the set of degenerate ground states has power-law correlations and is an example of a Coulomb phase. We investigate Neel ordering from such a Coulomb phase, induced by weak additional interactions that lift the degeneracy. We show that the critical point belongs to a universality class that is different from the one for the equivalent transition out of the paramagnetic phase, and that it is characterised by effective long-range interactions; alternatively, ordering may be discontinuous. We suggest that a transition of this type may be realised by applying uniaxial stress to a pyrochlore antiferromagnet.Comment: 4 pages, 3 figure

    Infrared identification of IGR J09026-4812 as a Seyfert 1 galaxy

    Full text link
    IGR J09026-4812 was discovered by INTEGRAL in 2006 as a new hard X-ray source. Thereafter, an observation with Chandra pinpointed a single X-ray source within the ISGRI error circle, showing a hard spectrum, and improving its high-energy localisation to a subarcsecond accuracy. Thus, the X-ray source was associated to the infrared counterpart 2MASS J09023731-4813339 whose JHKs photometry indicated a highly reddened source. The high-energy properties and the counterpart photometry suggested a high-mass X-ray binary with a main sequence companion star located 6.3-8.1 kpc away and with a 0.3-10 keV luminosity of 8e34 erg/s. New optical and infrared observations were needed to confirm the counterpart and to reveal the nature of IGR J09026-4812. We performed optical and near infrared observations on the counterpart 2MASS J09023731-4813339 with the ESO/NTT telescope on March 2007. We achieved photometry and spectroscopy in near infrared wavelengths and photometry in optical wavelengths. The accurate astrometry at both optical and near infrared wavelengths confirmed 2MASS J09023731-4813339 to be the counterpart of IGR J09026-4812. However, the near infrared images show that the source is extended, thus excluding any Galactic compact source possibility. The source spectrum shows three main emission lines identified as the HeI lambda 1.0830 micron line, and the HI Pa_beta and Pa_alpha lines, typical in galaxies with an active galactic nucleus. The broadness of these lines reached values as large as 4000 km/s pointing towards a type 1 Seyfert galaxy. The redshift of the source is z=0.0391(4). Thus, the near infrared photometry and spectroscopy allowed us to classify IGR J09026-4812 as a Seyfert galaxy of type 1.Comment: 4 pages, 3 figures, Astronomy and Astrophysics in pres

    Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis.

    Get PDF
    The giant otter, Pteronura brasiliensis, occupies a range including the major drainage basins of South America, yet the degree of structure that exists within and among populations inhabiting these drainages is unknown. We sequenced portions of the mitochondrial DNA (mtDNA) cytochrome b (612 bp) and control region (383 bp) genes in order to determine patterns of genetic variation within the species. We found high levels of mtDNA haplotype diversity (h = 0.93 overall) and support for subdivision into four distinct groups of populations, representing important centers of genetic diversity and useful units for prioritizing conservation within the giant otter. We tested these results against the predictions of three hypotheses of Amazonian diversification (Pleistocene Refugia, Paleogeography, and Hydrogeology). While the phylogeographic pattern conformed to the predictions of the Refugia Hypothesis, molecular dating using a relaxed clock revealed the phylogroups diverged from one another between 1.69 and 0.84 Ma, ruling out the influence of Late Pleistocene glacial refugia. However, the role of Plio-Pleistocene climate change could not be rejected. While the molecular dating also makes the influence of geological arches according to the Paleogeography Hypothesis extremely unlikely, the recent Pliocene formation of the Fitzcarrald Arch and its effect of subsequently altering drainage pattern could not be rejected. The data presented here support the interactions of both climatic and hydrological changes resulting from geological activity in the Plio-Pleistocene, in shaping the phylogeographic structure of the giant otter

    Deployment status of the Las Cumbres Observatory Global Telescope

    Get PDF
    Our global network of telescopes is designed to provide maximally available optical monitoring of time variable sources, from solar system to extra-galactic objects, and ranging in brightness from about 7-20m. We are providing a distributed network with varied apertures but homogeneous instrumentation: optical imaging, with spectroscopic capabilities. A key component is a single centralized process that accepts (in real time) and schedules TAC approved observing requests across the network; then continuously updates schedules based on status, weather and other availability criteria. Requests range from occasional to continuous monitoring, at slow to high-speed cadences (imaging and fast photometry), and includes rapid response to targets of opportunity. Each node of the network must be fully autonomous, with software agents to control and monitor all functions, to provide auto-recovery as necessary, and to announce their status and capabilities up the control structure. Real-time monitoring or interaction by humans should be infrequent. Equipment is designed to be reliable over long periods to minimize hands-on maintenance, by local or LCOGT staff. Our first 1m deployment was to McDonald Obs. in April 2012. Eight more 1m telescopes are close to deployment to complete the Southern ring, scheduled by end-2012

    All-Sky spectrally matched UBVRI-ZY and u'g'r'i'z' magnitudes for stars in the Tycho2 catalog

    Full text link
    We present fitted UBVRI-ZY and u'g'r'i'z' magnitudes, spectral types and distances for 2.4M stars, derived from synthetic photometry of a library spectrum that best matches the Tycho2 BtVt, NOMAD Rn and 2MASS JHK_{2/S} catalog magnitudes. We present similarly synthesized multi-filter magnitudes, types and distances for 4.8M stars with 2MASS and SDSS photometry to g<16 within the Sloan survey region, for Landolt and Sloan primary standards, and for Sloan Northern (PT) and Southern secondary standards. The synthetic magnitude zeropoints for BtVt, UBVRI, ZvYv, JHK_{2/S}, JHK_{MKO}, Stromgren uvby, Sloan u'g'r'i'z' and ugriz are calibrated on 20 calspec spectrophotometric standards. The UBVRI and ugriz zeropoints have dispersions of 1--3%, for standards covering a range of color from -0.3 < V-I < 4.6; those for other filters are in the range 2--5%. The spectrally matched fits to Tycho2 stars provide estimated 1-sigma errors per star of ~0.2, 0.15, 0.12, 0.10 and 0.08 mags respectively in either UBVRI or u'g'r'i'z'; those for at least 70% of the SDSS survey region to g<16 have estimated 1-sigma errors per star of ~0.2, 0.06, 0.04, 0.04, 0.05 in u'g'r'i'z' or UBVRI. The density of Tycho2 stars, averaging about 60 stars per square degree, provides sufficient stars to enable automatic flux calibrations for most digital images with fields of view of 0.5 degree or more. Using several such standards per field, automatic flux calibration can be achieved to a few percent in any filter, at any airmass, in most workable observing conditions, to facilitate inter-comparison of data from different sites, telescopes and instruments.Comment: 36 pages, 30 figures, 3 printed tables, several electronic tables, accepted PASP Dec 201
    corecore